Great Computer Challenge
Scientific/Non-Business Programming
Level IV

2013
Solve as many problems as you can in the time allocated, in case of a tie the best overall solution will be used as a tie breaker. You should test your code and leave any instructions for the judges on your solution sheets. The decision of the judges is final.
1. I want to be a double-knot spy when I grow up.
Steganography is the science of hiding a message inside another apparent message. In the real world, a message may be sent in a JPG by fiddling with the bits in certain pixels to convey a text message with those bits.

In this problem we will use a simpler approach, concealing a message inside a text message by using capital and lower case letters to implement an extended "prisoner's code" (EPC) that prisoners use to communicate by tapping on walls or pipes.

The EPC is based on this matrix:
 1 2 3 4 5
1 a b c d e
2 f g h i j
3 l m n o p
4 q r s t u
5 v w x y z
6 . , ! ?

each letter or symbol is represented first by its row, column address:

s is 4 3, space is 6 1.
special cases:

k is replaced by c (that is 1 3)
All other punctuation:

 is replaced by: ? (that is 6 5).

So 'hi!' is represented by 2 3 2 4 6 4

To hide one message in another, we take a long message (the cover
text) and use sequences of upper and lower case to hide the secret
message in it. The columns are represented by upper case and the rows by
lower case.We ignore spaces and punctuation in the cover, but
not in the secret. Both cover and secret are transformed to lower
case to begin with. So: WHen iN The coURSE of huMAN EVENTS represents
'hi!'.

The end of message is signalled by a sequence of 7 or more upper case
characters.

Example:

Secret:

Hello World!

Cover:

When in the Course of human events, it becomes necessary for one people to
dissolve the political bands which have connected them with another, and to
assume among the powers of the earth, the separate and equal station to
which the Laws of Nature and of Nature's God entitle them, a decent respect
to the opinions of mankind requires that they should declare the causes
which impel them to the separation.

Output:

WHen iN the coURSe OF HuMAN evenTS, IT BEcomes NECESsaRY For onE PEOplE TO
dIssolVE THE PolitICAL BAnds whICH HAVE connected them with another, and to
assume among the powers of the earth, the separate and equal station to
which the laws of nature and of nature's god entitle them, a decent respect
to the opinions of mankind requires that they should declare the causes
which impel them to the separation.

Your program will read a file. The secret will come first and will end with
the first blank line. The rest of the file will be the cover. Your program
should print the cover with the secret encoded.
2. Swish and flick, Harry Potter’s Magic Square.
A magic square of order N is an N x N matrix of integers, where N is odd and greater than 1, such that the sum of the values in each row, column, and major diagonal are all equal. For example, consider the 3 x 3 matrix
	9
	2
	7

	4
	6
	8

	5
	10
	3

Each row, column and major diagonal sums to 18.
Magic squares may be produced by the following algorithm. This algorithm defines the order in which to fill the cells of the square with a sequence of numbers K, K+1, K+2, ..., K+N2-1.
1. Place the first number K in the middle of the top row. (You are now in row R, column C.)
2. Move up one row. If this takes you out of the matrix, move to the bottom row. You are still in column C, but you are now in some new row R2.
3. Move to the right one column. If this takes you out of the matrix, move to the left-most column. You are still in row R2, but you are now in a new column C2.
4. If this position is occupied by a number you have previously placed, go back to row R, column C. Then stay in the same column and move down one row. If this takes you out of the matrix, stay in the same column and go to the top row.
5. Place the next number in the cell you arrived in by following steps 2-4.
6. If you have filled the square, you are done. Otherwise, call your current row R and your current column C and go to step 2.
For this problem you will read two integers on one line. The first will tell you the number of rows in the magic square. The second will be the number with which to start in step 1. Your output will be a magic square produced by the algorithm above.
Example:

Input:
5 1
 Output:
17 24 1 8 15
23 5 7 14 16
 4 6 13 20 22
10 12 19 21 3
11 18 25 2 9
3. Hoot Mon is that ye Sporran?
The age old tradition of generating tartans in Scotland has gone high tech. Much of the export material is now woven by machine. You are to write a code that accepts a string of color codes and displays to the screen what that pattern would look like. For example if you enter 2 colors from the keyboard (red (R) and brown (B)) the string would be RB. The results would be displayed in a five by five grid as shown below:

R B R B R

B R B R B

R B R B R

B R B R B

Another sample using blue (b), Yellow (Y) and white (W) might accept the follow string

YbYYbWb

Y b Y Y b

b Y Y b W

Y Y b W b

Y b W b Y

b W b Y b
4. Gee, I’ll just put a *
In many computer applications it is desirable to be able to specify a pattern that can be used to identify a group of files by name. For example, if we wanted the program to deal with the files ‘FNA.DOC’, ‘FNB.DOC’, and ‘FNC.DOC’, we would like a way to say “get files that match the pattern FN plus some character plus .DOC.” rather than having to type in the name of each file individually.
A device known as a wildcard often provides this functionality. In this problem, the only wildcard is the question mark. In the filename, the name and extension parts will contain only alphabetic characters. For example, the following names are legal:
ABC.DOG
AXC.DOG
ABCC.DOG
ABCCD.DOG
AC.DOG
AB.DOG
The pattern looks like a legal filename except that it contains 0 or more wildcards that can go anywhere an alphabetic character can go. For example, the following are legal patterns:
ABC.DOG
A?C.DOG
A??C.DOG
AB?.DOG
AB??.DOG
The rules of matching using the wildcard are as follows.
1. Each alphabetic character in the pattern must match the same character in the filename. So pattern ABC.DOG can only be matched by filename ABC.DOG.
2. If a series of question marks in the name or extension is followed by an alphabetic character, then each wildcard must be matched by exactly one alphabetic character. So pattern A?C.DOG matches ABC.DOG and AXC.DOG but not AC.DOG or ABCC.DOG. Pattern A??C.DOG does not match ABC.DOG or AXC.DOG or AC.DOG, but does match ABCC.DOG.
3. If a series of question marks in the name or extension is not followed by an alphabetic character, then each wildcard must be matched by zero or one alphabetic character. So pattern AB??.DOG matches ABC.DOG and ABCC.DOG and AB.DOG, but not ABCCD.DOG.
4. The wildcards may appear in the name section or the extension section of the pattern or in both.
The problem.
Input: a pattern followed by a blank followed by a series of filenames separated by blanks.
Output: the filenames that match the pattern.
Example
Input: AB??.D?G AB.DAG ABC.DEF ABC.DOG ABCC.DOG ABCCD.DOG
Output: AB.DAG ABC.DOG ABCC.DOG
5. Goldbach’s Conjecture

A prime number is a positive integer having exactly two divisors among the positive

integers (namely, itself and one). The first several primes are 2, 3, 5, 7, 11, and 13.

(Note that 1 is not prime, as it has only one divisor (namely itself) among the positive

Integers.)

In a letter to Euler in 1742, Christian Goldbach conjectured that every even integer

greater than two is the sum of two prime numbers. Euler agreed that the conjecture

was probably true, but, despite the efforts of a number of mathematicians over the

past two hundred sixty years, no one has yet been able to prove or disprove it.

Recently, with the help of electronic computers, it has been shown that the conjecture

holds for numbers up to 4 × 1014.

Develop a program that, given as input a list of even integers greater than two (but no

greater than one thousand), produces as output, for each number in the list, every

pair of prime numbers that sum to it.

Input:

The first line of input contains a positive integer n indicating how many numbers are

to be processed. On each of the next n lines is an even integer greater than two (but

no greater than 1000).

Output:

For each of the n numbers given as input, that number should be displayed on one

line. On the following lines, every distinct pair of primes summing to it should be

displayed, one pair per line, with the smaller of the two primes in each pair listed first.

The pairs should be listed in increasing order with respect to the smaller prime in

each one. Following that should be a blank line.

Sample input from keyboard

4 48 38 12 100

Corresponding output

48 5 43 7 41 11 37 17 31 19 29

38 7 31 19 19

12 5 7

100 3 97 11 89 17 83 29 71 41 59
 6. Hey Socrates! Can you tell me next week’s LOTTO numbers?
The Greeks began an examination of numerology by classifying all positive integers as perfect, abundant, or deficient. This classification scheme is based on the factors (even divisors) of the number. If the sum of all of the factors of a number (excluding the number itself) equals the number then it is said to be a “perfect”. For example, the factors of 6 are 1, 2, 3, and 6. Therefore, the number 6 is a perfect number. The total of the factors of 6 (excluding the number itself, in this case 6) is 1 + 2 + 3 = 6. An abundant number is one in which this sum of factors (excluding the number itself) is greater than the number. An example of an abundant number is 12, because the sum of the factors of 12 is greater than 12. ex. 1 + 2 + 3 + 4 + 6 = 16 which is greater than 12. All numbers that are neither perfect nor abundant are deficient.
Write a program that prompts the user to enter a positive integer (allow integer values between 1 and 500). The program should at this point display the original number, the factors in that number and whether the number is perfect, abundant, or deficient.
EXAMPLE: (bolded values denote user input)
Please enter a positive integer: 6
The factors of 6 are: 1, 2, 3, 6
The number 6 is perfect
Please enter a positive integer: 12
The factors of 12 are: 1, 2, 3, 4, 6, 12
The number 12 is abundant
Please enter a positive integer: 333
The factors of 333 are: 1, 3, 9, 37, 111
The number 333 is deficient
Page 1 of 5
Scientific/Non-Business Programming, Level IV

Great Computer Challenge, 2013

